Radiation-Induced Tumor Vascular Destruction
نویسندگان
چکیده
The phosphatidylinositol 3 -kinase (PI3k)/protein kinase B (PKB/Akt) signal transduction pathway plays a critical role in mediating endothelial cell survival and function during oxidative stress. The role of the PI3k/Akt signaling pathway in promoting cell viability was studied in vascular endothelial cells treated with ionizing radiation. Western blot analysis showed that Akt was rapidly phosphorylated in response to radiation in primary culture endothelial cells (human umbilical vascular endothelial cells) in the absence of serum or growth factors. PI3k consists of p85 and p110 subunits, which play a central upstream role in Akt activation in response to exogenous stimuli. The isoform of the p110 subunit is expressed in endothelial cells. We studied the effects of the p110 specific inhibitor IC486068, which abrogated radiation-induced phosphorylation of Akt. IC486068 enhanced radiation-induced apoptosis in endothelial cells and reduced cell migration and tubule formation of endothelial cells in Matrigel following irradiation. In vivo tumor growth delay was studied in mice with Lewis lung carcinoma and GL261 hind limb tumors. Mice were treated with daily i.p. injections (25 mg/kg) of IC486068 during 6 days of radiation treatment (18 Gy). Combined treatment with IC486068 and radiation significantly reduced tumor volume as compared with either treatment alone. Reduction in vasculature was confirmed using the dorsal skinfold vascular window model. The vascular length density was measured by use of the tumor vascular window model and showed IC486068 significantly enhanced radiation-induced destruction of tumor vasculature as compared with either treatment alone. IC486068 enhances radiation-induced endothelial cytotoxicity, resulting in tumor vascular destruction and tumor control when combined with fractionated radiotherapy in murine tumor models. These findings suggest that p110 is a therapeutic target to enhance radiation-induced tumor control.
منابع مشابه
Phosphatidylinositol 3-kinase/Akt signaling in the response of vascular endothelium to ionizing radiation.
Growth factor enhancement of endothelial cell viability occurs through phosphatidylinositol 3-kinase (PI3K)/Akt-mediated inhibition of apoptosis. The PI3K/Akt signal transduction pathway was activated by both vascular endothelial growth factor and ionizing radiation. Radiation- and vascular endothelial growth factor-induced phosphorylation of Akt was inhibited by PI3K antagonists. To determine ...
متن کاملSoy isoflavones radiosensitize lung cancer while mitigating normal tissue injury.
BACKGROUND We have demonstrated that soy isoflavones radiosensitize cancer cells. Prostate cancer patients receiving radiotherapy (RT) and soy tablets had reduced radiation toxicity to surrounding organs. We have now investigated the combination of soy with RT in lung cancer (NSCLC), for which RT is limited by radiation-induced pneumonitis. METHODS Human A549 NSCLC cells were injected i.v. in...
متن کاملThe indoleamine 2,3-dioxygenase pathway controls complement-dependent enhancement of chemo-radiation therapy against murine glioblastoma
BACKGROUND Indoleamine 2,3-dioxygenase (IDO) is an enzyme with immune-suppressive properties that is commonly exploited by tumors to evade immune destruction. Anti-tumor T cell responses can be initiated in solid tumors, but are immediately suppressed by compensatory upregulation of immunological checkpoints, including IDO. In addition to these known effects on the adaptive immune system, we pr...
متن کاملEvaluation of a 99mTc-tricine Vascular Disrupting Agent as an In-vivo Imaging in 4T1 Mouse Breast Tumor Model
Colchicine as a vascular disrupting agent creates microtubule destabilization whichinduces vessel blockage and consequently cell death. Accordingly, colchicines and itsanalogues radiolabeled with 99mTc may have potential for visualization of tumor. In this work,deacetylcolchicine a colchicine analogue was labeled with 99mTc via tricine as a coligandand characterized for its tumor targeting prop...
متن کاملEvaluation of a 99mTc-tricine Vascular Disrupting Agent as an In-vivo Imaging in 4T1 Mouse Breast Tumor Model
Colchicine as a vascular disrupting agent creates microtubule destabilization whichinduces vessel blockage and consequently cell death. Accordingly, colchicines and itsanalogues radiolabeled with 99mTc may have potential for visualization of tumor. In this work,deacetylcolchicine a colchicine analogue was labeled with 99mTc via tricine as a coligandand characterized for its tumor targeting prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004